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ABSTRACT

The goal of this work is to compare the pertormance

of response surface methodology (RSM) and two types ot

neural networks (NN) to aid preliminary design of two rocket
engine components. A data sct of 45 training points and 29
test points, obtained from a semi-empirical model based on
three design variables, 1s used for a shear coantal mgector
clement. Data for supersonic turbine desien is based on six
destgn variabies, 76 tramming data und 1S test data ebtaned
from simplified aerodynamic analysis. Several RS and NN are
first constructed using the training data. The test data are then
employed to select the best RS or NN Quadratic and cubic
response surfaces. radial basis neural network (RBNN) and
hack-propagation neural network (BPNN) are compared. Fwo-
lavered RBNN are generated using two different tramming
algorthms, namely. solverbe and olveri 5 rao-lavered
BPNN is generated with Tan-Sigmoid  transter tunction.
Various issues related to the traiming of the neural networks
are addressed. including number e neurons.
spread constants, and the aceuracy ol difterent models
representing the design space. A\ search tor the opumum
design is carried out using a standard.  zradient-based
ptimization algorithm over the response surfaces represented
hyothe polynomiads and tramned neural networks, Usually o
cuble polvnomial hetter  than  ihe  quadrabe
polynomial but exceptions have been notced. Among the NN
chotces. the RBNN designed using selvertr vields more
consistent  performance  for  both  engine  components
considered. The training of RBNN 15 casier as 1t requires
Linear regression. This coupled wih the consistency  in
performance promise the possibility of it being used as an
optimization strategy for engineering desien problems.
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1 INTRODUCTION

I.1 General Background

Advanced rocket propulsion systems are being
proposed to meet goals for increased performance,
robustness. und safety while concurrently decreasing
weight and cost. These new goals are forcing consideration
o design variables over ranges and in combinations not
tvpreally employed. thereby increasing the design space
complexiy. Objective and efficient evaluation of these new
and complex designs can be facilitated by development and
implementation of  systematic  techniques. Accordingly,
Response  Surface Methodology' (RSM) and Neural
Network” {NN) techniques have been used to generate
.urrogate models representing data obtained from complex
numerical and experimental simulations. An optimization
Agorithm is then used to interrogate these models for
optimum design conditions. based on specified constraints.
In this studv. the preliminary desien issues related to rocket
propuision components, including gas-gas injectors and
supersonic turbines have been investigated. The objective
4 this ¢iTort 1s W0 assess relative performance of RSM and
NN technigues in representing the design space.

A polynomial-based RSM. in which the design
space is represented with quadratic and cubic polynomials
in the dJependent wariables. s used. The  polynomial
caetticients vbtained by linear  regression.  The
maximum or the minimum of the surface can then be
iocated using a gradient search method. Response Surface
methodologies have been used before tor rocket engine
component design. For example. Tucker et al.* have used
RSM for rocket injector design. The approach is not tied to
any specitic data type or source. The dimensionality of the
Jdata is not a concern. and data obtamned through both
numerical and experimental methods can be effecuvely
used. RSM enables the designer to combine any number of
design variables for different 1ypes of injectors and
propellant combinations. This generality allows the
consideration of information at varving levels of breadth
‘Le.. scope of design variables) and depth (i.e.. details of
the design variables).

The RSM is effective 1n representing the global
characteristics of the design space and it filters noise
associated with design data. Depending on the order of
polynomial employed and the shape of the actual response
surtace. the RSM can introduce substantial errors in certain
regions of the design space. Shvy et al.* have showed it that
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for a given injector design, a third order response surtace
performs better than a second order surface. Generation of
polynomial based surfaces can be costly for cases involving
many of design variables due to the amount of data required to
evaluate the coefficients. In fact. the number of coetficients
increases rapidly with the order of polynomial. For example, a
complete second-order polynomial of V design variables has
(N+1)N+2)/(2!) coefficients. A complete cubic model has
(N+IUN+2UN+3)/3!) coefficients. The choice of order of the
polynomial and the terms to be included depends on the
design problem. Many combinatons of terms may have to be
tried to represent the design space before the best one can be
selected.

An optimization scheme requiring lurge amounts of
data and evaluation time to generate meaningtul results 1s of
limited value. While the preliminary designs can be
accomplished with empirically based information. detailed
designs often require use of data trom experiments and/or
computational tluid dynamics (CFD) analyses. This data can
he time consuming and cxpensive o generate in large
Juantities. Recently. NN have been used to represent the
models instead of the more tvpical polynomial RSM. Work in
the area of NN by Shyy et al.* and Papila et al.” have shown
that some NN can pertorm well even when a modest amount
of data is available. In particular radial basis neural networks
(RBNN) like polynomial based RSM require only linear
regression for training and have proven 1o be parucularly
accurate. Norgaad et al.” and Ross et al. have mvesueated the
feasibility of reducing wind wnnel test imes by using NN 1o
iterpolate between measurements and demonstrated  cost
savings. These works have tocused on using the NN to predict
data. Attempts (o use the network as a tunction evaluator and
then to link it to the optimizer have been made by Protzel et
1%, Rai and Madavan” and Greenman and Roth™.

NN are highly tlexible in functional torm and hence
can offer significant potential for representing complex
functions. Networks. like RBNN. that are tlexible and employ
linear regression methods can use both of these properties to
improve the performance. The number ol neurons 1n the
network. size of the region over which the neuron 1y sensitive.
and the training accuracy of the network are some of the
parameters that need to be selected ma network, These can be
determined by comparing the performance of NN designed
with different values of these parameters. Neural networks can
be effectively used in two ways. First. they can be used 1n
conjunction with RSM. In complex regions ot the surface, the
NN can be trained using the existing data. The trained NN can
then be used to generate additional data to augment existing
data. thus possibly enhancing the accuracy of the surtace in
that particular area. Such an approach wis investigated by
Shyy et al*. This work demonstrated that the NN could indeed
vield additional information to help generate more accurate
polynomial-based response surfaces. Second. NN can generate
data to be used directly in conducting gradient-based
optimization. In other words. NN can perform the role of
cither enhancing the fidelity of a polynomial-based response
surface. as in the first approach. or generating information as
mput to an optimizer by self without resorting to
polynomial representation. as in the second approach. Either
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way. the only function evaluations required are for the
points sought by the optimizer, which searches the design
space based on the sensitivity of the response 10 the
perturbations in the design variables.
1.2 Scope

The present work is aimed at a direct comparison
of the RSM and NN techniques in terms of accuracy and
efficiency; the hybrid RSM-NN scheme noted above will
not be used here. Both techniques are applied to data used
in the design of two rocket engine components: a shear co-
axial injector and a supersonic turbine. Variations of each
technique are evaluated. Both second and third order
polynomials will be used for the Response Surface (RS).
Two NN schemes. radial basis and the more commonly
used back-propagation NNs are used. The same database
for each component will be used to train both the RS and
the NN. Both will then be linked t an optimization
procedure. There is little rigorous theory in the literature to
establish the desired framework for a clear comparison
between the performances of the two techniques. However,
this work provides an assessment of the techniques
regarding their practical use in  the rocket engine
component design process.
2 APPROACHES
2.1 Summary of Analytical Models and Design
Variables

I'wo components of a rocket propulsion system
have been considered here. the injector and the turbine.
First. a shear coaxial injector clement that uses gaseous
oxygen (GOs) and gaseous hvdrogen «GH-) as propellants
1s used to investigate the relative performance of RSM and
NN in the design of rocket engine mjectors. The onginal
data set trom Tucker et al® (45 design points) is used to
senerate quadratic and cubic response surfaces tor both,
energy release efficiency (ERE). a4 measure of injector
performance. and chamber wall heat tlux (Q). These 45
design points are evenly distributed over the design space.
ERE was obtained using correlations taking into account
combustor length. L., (length from injector to throat), and
the propellant velocity ratio. V/V.. The nominal chamber
wall heat flux at a point just downstream of the injector,
Qe was calculated using a modified Bartz equation. It
was then correlated with propellant mixture ratio. O/F, and
propellant velocity rato, V/V, to yield the actual chamber
wall heat tlux, Q. The accuracy of each polynomial fit on
the original data set is evaluated. Two different types of
radial basis NN (RBNN) and a back propagation NN
(BPNN) are also trained to represent ERE and Q. Each
surface is then used to conduct design optimization over the
same range of independent variables. The optimal design
points are compared with exact points calculated from the
empirical model of Calhoon et al''. The range of design
variables considered in this study is shown in Table 1.
Twenty additional data points that are not used in the
seneration of response surfaces or the neural networks are



used to assess the accuracy of different variants of RSM and
NN.

The other propulsion system component examined s
a supersonic turbine where the preliminary design s
conducted by one-dimensional aerodynamic analysis using
FpgenML". FpgenML generates a tlowpath and runs a
preliminary meanline calculation on this flowpath. In this
study, a single stage turbine has been considered. There are six
design parameters and four output variables involved in this
design process. There are 76 design points available for
training. These 76 points were selected by using a face
centered composite (fcc) design. Instead of 77 design points.
as would be provided by a fce design for six vartables, only 70
were available since the meanline code could not converge for
one of the designs. The design variables are the mean
diameter. D. RPM. blade annulus area. A,,,. vane axial chord.
C.. blade axial chord. C,, and stage reaction. ,. These are
parameters  influencing  the structural  properties  and
performance of the turbine. Overall efficiency of the wrbine.

1. wrbine weight, W. a lumped inertia measure. PANT T

/RPMJ) and speed at pitchline, V., 1D RPM) arc chosen as
dependent variables. The goal 15 0 manmze the incremental
pavload (Apavi. which is derived from turbine weieht (W) and
ettictency (1)). Theretore, the objective is a design where Wis
mimmized and 7 is maximized. Due o the structural
considerations, constraints have to be imposed on (ANJ and
Vo

Using 18 additional simulations. distributed within
the design space. the accuracy of the models tested. The
ranges considered for the design varables and the dependent
variables are shown in Egs. ¢ 11 and (20,

For the design variables: 3
1496 > D > 0.0502
[.4>RPM>0.0

L35, >0.099 \ 0
1706 > ¢ > 0.394 |
1143> ¢, > 0.204 1
00>k >05 /

IFor dependent variables:
Lil6>n>0223

0801 > W>0.422 \

2197 > AN > 0.343 ” 2
1849 > V0 > 0.0484 J‘

All the variables involved in the design process are
normalized by their respective baseline values.
2.2 Objective Functions
When attempting to optimize two or more different
objective functions, contlicts between them arise because of
the ditferent relationships they have with the independent
parameters. To solve this problem. u multi-objectwe“
approach is investigated in this study. Here, competing
objective functions are cembined to 4 single composite
objective function. The maXimization ot the composite
function effectively provides a compromise between the
individual tunctions. An average of some torm is normally
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used to represent the composite function. For example,
Tucker et al’ used a geometric mean to combine their two
objectives. ERE and Q. The composite desirability is of the
form

Vi
d | 3)
|

1=l ;

T

o

where D is the composite objective tunction, d;’s are
normalized values of the objective functions and [ is the
number of objective functions.

Another way of constructing a composite function
is to use a weighted sum of the objective functions. The
composite desirability tunction can then be expressed as

D=Yctf (4)

where D is the composite objective function and f’s are the
non-normalized  objective  functions.  The ¢'s  are
dimensionai parameters that control the importance of each
objective tunction.

For the injector. the goul is to maximize the
cnergy release efficiency. ERE while minimizing the
chamber wall heat tlux. Q. This is achieved by maximizing
4 composite objective function given by Eg (5).

i) :"L/‘-_,‘v.,tl“) - (3)

where the normalized functions are detined in Egs. (6) and
. 7h. i the case where a response should be maximized,
such as ERE. the normalized function takes the form:

, FRE - A -
g, = ———— lorASERE<S (0)
#-A

where B is the target value and A 15 the lowest acceptable
value. We set dppp = / for any ERE > B and dgge = 0 for
FRE < A, The choice of s is made based on the subjective
importance ol this objecuve 1 the composite desirability
function. In the case where a response is to be minimized.
wuch as ). the normalized function takes on the torm:

E-Q 1
<1,_,=|——J for C <ERE <E 7)

LE-C

where (" is the target value and £ is the highest acceptable
value. We set dp = / forany Q < Cand dg =0 for Q > E.
A, B C. and E are chosen according to the designer’s
priorities or. as in the present study. simply as the boundary
values of the domain of ERE and Q. The value of ¢ is again
chosen 1o reflect the importance of the objectives in the
design. In the study A and B are equal to 95.0 and 99.9.
respectivelv. Values of C and E are equal to 0.48 and 1.1,
respectivelv. Both s and 1 were set to a value of 1.



In the case of the turbine, a weighted sum of the two
objectives 1 and W has been used. The expression. in the
context of the turbine gives the incremental value ot the
payload with the change in Wand 1. The goal is to maximize
this incremental value. which in turn results in minimum W
and maximum 7).

D = Apay = C;x100x(n- n,)-C-x (W-W,) (8)

C, = the amount of payload increment capacity for
any etficiency gain

C- = the amount of pavload increment capacity for
any weight gain

1 = the calculated efticiency

n, = the baseline efficiency

W = calculated weight

W, = the baseline weight.

where

The baseline efficiency and weight are obtained using
existing  design  knowledge without benefiting  from  an
optimization strategy. The weight associated with 1 expressed
m percentage, by multiplying 1t with 100, 15 ¢ and the werght
associated with W is Co. This relationship 1s developed based
on detailed turbopump design processes. bFor one pereent
increase in efficiency a pavioad increase ot Cilbs can be
achieved. and as the weight of the turbine increases the
pavload has to be correspondingly decreased by a factor of C-.

2.3 Response Surtace Methodology (RSM)

Polynomial RSM constructs polynomials of assumed
arder and unknown coefficients based on regression analysis.
The solution tor the sct of that hest tits the
training data is a linear least square problem. The number ot
coetticients 1o be evaluated depends on the order of
polynomial and the number ot design parameters invoived.

According o the injector model  developed by
Calhoon et al''. injector performance. as measured by ERE
depends only on the velocity ratio, VAV and combustion
chamber length, L. Theretore. only 3 disunct design
points are available for ERE. Since chamber wall heat flux
depends only on the velocity ratio, VA7 and the oxidizer o
fuel ratio. O/F. there are 9 distinct design ponts tor (). The
design space for this problem is depreted in Frgure | For £RE.
the 3 distinet chamber lengths otfer the potential for a fourth-
order polynomial fit in L, while the three ditferent velocity
ratios limit the fit in V/V, to second order. Quadratic and
cubic response surfaces for both ERE and () have been
generated for evaluation. The above-noted limitations on the
data. limits the cubic surfaces to be third order in L., only.

As already mentioned. 1o construct a4 complete
quadratic polynomial of N design varibles. the number of
coetticients required is (N+/)(N+2)/2!). In the turbine case
with 6 design variables. we would need to esumate 28
coetficients. A complete cubic model would require
IN+IHN+2HN+3)/3!) or 84 coetficients and four levels.
Since the data available is<now sutticient to evaluate all the
cubic terms, reduced cubic models are emploved.

The response surtaces were generated by standard
least-squares regression using IJMP™. 4 statistical analvsis

coetticients
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software package. JMP is an interactive, spreadsheet-based
program having a variety of statistical analysis tools.
Statistical techniques are also available for identifying
polynomial coetficients that are not well characterized by
the data. A stepwise regression procedure based on t-
statistics 1s used to discard terms and improve the
prediction accuracy. The t-statistic, or t-ratio. of a particular
coefficient is given by the value of the coefficient divided
by the standard error of the coetficient, which is an estimate
of its standard deviation. The accuracy of different surfaces
at points different from the training data can be estimated
by comparing the adjusted root mean square error defined
as:

T
12 )

Here ¢, 1s the error at i point of the training data, n is the
number of training data points and #, 1s the number of
coetficients. When the data contains uncorrelated Gaussian
noise. @, provides an unbiased estimate of that notse. Even
when the error is not solely due to noise ¢, provides a good
overall comparison among the ditterent surtace fits.

The accuracy of the models in representing the
objective functions is also gauged by comparing the values
of the objective function at test design points, different
(rom those used to generate the tit. The root mean square

crror. . for the test set 1s given by

(T = (—— (IO)

N
yom

In this equation & is the error at the i test point and 1 1s
the number of test pomts.

24 Neural Networks

Two different types o NN have been used,
namely radial basis" and back-propagation'’. The training
process of the network is a cvelic process and the weights
and biases of the nodes of the network are adjusted until an
accurate mapping is obtained. This trained network can
then predict the values of the objective tor any new set of
design variables in the design space. The neural network
toolbox"” available in Marlab is used tor the current
analysis.

Radial Basis Neural Networks (RBNN)
Radial-basis  neural networks uare two-layer
networks with a hidden laver of radial-basis transfer
tunction and a linear output layer (Figure 2). RBNN
requires large number of neurons. depending on the size of
the data set. but they can be designed in a small amount of
time. This is due to the fact that the process of determining
the-weights associated with the large number of neurons
uses linear regression. Thus, they may be efficient to train
when there are large amounts of data available for training.
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The transfer function for radial basis neuron is
radbas. which is shown in Figure 2b. Radbas has maximum
and minimum outputs of | and 0. respectively. The output of
the function is given by

a = rudbm‘(dist(w. py)xb) (1D

where radbas is the transfer function. dist 1y the vector
distance between the network weight vector, w and the input
vector, p, and b is the bias. In a radial basts network (Figure
2a) each neuron in the radbas hidden layer is assigned
weights, w; which are equal to the values of one ot the training
input design points. Therefore. each neuron acts as a detector
for a different input. The bias for each neuron in that layer. by
is set to 0.8326/sc. where sc is the spread constant. a value
defined by the user. This defines the region ot influence by
each neuron. The whole process is then reduced o the
evaluation of the weights, ws. and biases. /.. in the output
linear layer, which is a linear regression problem. It the input
(b a neuron is identical to the werght vector, the vutput of that
neuron is 1. since the etfective input to the transter function is
sero. When a value of 0.83206 is passed through the transter
function the output is 0.5. For a vector distance equal to or less
than 0.8326/b. the output is 0.3 or more. The spread constant
defines the radius of the design space over which a neuron has
a response of 0.5 or more. Small values of se can result in poor
response 1n a domain not closely located to neuron positions.
that 1s. for inputs that are far from the traning data as
compared to the defined radius. the response trom the neuron
will be neghgible. Large values will result in fow sensitivity ol
neurons. Since the radius of sensitivity is large. neurons whose
wetghts are different from the mput values 0y large amount
will still have high output thereby resulting inaflat network.
The best value of the spread constant tor some test data can be
found by comparing ¢ tor networks with ditferent spread
GOSNy

tn Matlab, radial-basis networks can be designed
using two ditterent design procedures. solverbe and solverh.
Solverbe designs a network with zero crror on the training
vectors by creating as many radial basis neurons as there are
input sets. Therefore, soiverbe may result in o lurger network
than required and map the network cxactly. thereby fitting
numerical noise. A more compact destgn 1 terms of network
Lize 1s obtained from sefverb, which creates one neuron at a
lime to minimize the number of neurons required. At each
cpoch or cycle. neurons are added to the network till a user
specitied RMS error is reached or until the network has the
maximum number of neurons possible. The design parameters
tor solverd are the spread constant. a user defined RMS crror
soal. and the maximum number of cpochs whereas it is only
the spread constant for solverbe.

[n case of the injector design there are two objectives.
namely ERE and Q and for turbine the objectives are 17 and W.
Figures 3 and 4 give the variation of o for the network design
with solverbe tor the objective functions of the two engine
components. In case of solverb’the error goal during traiming
tso defines the accuracy of-the network. An objective of
litting a numerical model is 1o remove the noise associated
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with the data. A model, which maps exactly as solverbe
does. will not eliminate the noise, whereas solverb will.
Figures 5 and 6 give the variation of o for the network
design with solverb for the objective functions of the two
engine components.

By comparing Figures 3-6 it can be seen that for
low values of spread constant the NN network has a poor
performance. As the spread constant increases O
asymptotically decreases. However. as demonstrated by
Figure 5a the performance of the network can deteriorate
for higher values of the spread constanr. The region with a
large variation in o is highly unreliable because this
indicates a high sensitivity of the model to a small variation
of spread consiant and possibly the test data, in this region.
Hence the desirable spread constant is selected from the
region where the performance of the network is relatively
consistent.

Figures 5 and 6 also show the influence of error
¢oal on the network. Generally if a network maps the
rraining data accurately it can be expected to perform
etficiently with the test data. However, accurately mapping
noisy data may result in poor prediction capabilities for the
network. The variation in the performance is not significant
except for the ERE and Q network (Figure 5). where the
poor pertormance of the network at high values of spread
constant improves for a larger crror goal. This may
indicate the presence of noise in the data for ERE, which
solverh s able o eliminate with an appropriate error goal.
Fioure 7 shows variations in number ot epochs and o with
the variation ol error goul tor a given spread constant
when RBNN is designed with solverh. The number of
peurons in the network is one more than the number of
epochs. One expects that as the crror goal increases the
number of epochs becomes smaller and  the network
performs less accurately as in Figures 7a and 7b. However
as demonstrated by Figures 7¢ and 7d. a more stringent
crror voal tor the training data does not necessarily result
in better predictive capability against the test data. Less
aceurate network can be designed for these objectives,
which have smailer prediction error.

When choosing an appropriate network the above-
mentioned features have to be considered. The performance
of the constructed NN is best judged by comparing the
prediction error as given in Eq. (10). tor different networks.
Using solverbe. networks are designed with varying spread
constants and the one that yields the smallest error is
selected. When solverb is used, networks are designed for
different spread constants and error goals. The network
that gives the smallest error for the test data is used. The
details of the networks selected are discussed in later
sections.
2.42  Back-propagation Neural Networks (BPNN)
Back-propagation  networks are  multi-layer
networks with hidden lavers of sigmoid transter function
and.a linear output layer (Figure 8). The transfer function in
the hidden lavers should be differentiable and thus, either
Jog-sigmoid or tan-sigmoid functions are tvpically used. In
this studv. a single hidden laver with a tan-sigmoid transfer



function. ransig, (Figure 8b) is considered. The output ot the
function is given by

2)

a = tansig (Wp +b) (12

where ransig is the transter function, w is the welght vector. p
is the input vector and b is the bias vector. The maximum and
minimum outputs of the function are ! and ~1. respectively.
The number of neurons in the hidden layer of a back-
propagation network is a design parameter. It should be large
enough to allow the network to map the functional
relationship. but not too large to cause overfitting. Once it has
been chosen. the network design is reduced to adjusting the
weight matrices and the bias vectors. Since tor BPNN the
unknown weights are in the nonlinear function, the training
process requires nonlinear regression.  which s an
optimization process. This optimization 1s usually performed
using grad

ient methods. In Matlab. back-propagation networks can be
trained by using three different training tunctions. trabp,
srainbpy and trainim. The first two are hased on the steepest
Jescent method. Simple back-propagation with wmbp s
usually slow since it requires small learning rates tor stable
learning. Trainbpx, applying momentum or adaptive learming
rate. can be considerably faster than rrainbp, but trainim,
applying Levenberg-Marquard: optimlzu[mn“. is the most
cfficient since it is based on a more cificient optimization
algorithm.

The design parameters tor paomin are the number of
neurons in the hidden laver. a user defined error ¢oal. and the
maximum number of epochs. The tramming continues untii
cither the crror goal is reached. the mimmum error eradient
oceurs or the maximum number of epochs has been met.

For BPNN. the initial weights and  buases
randomly generated and then the optimum weights and biases
are evaluated through an iterative process. The werghts and
hiases are updated by changing them in the direction ot down
Jope with respect to the sum-squared error ot the network.
which s to be minimized. The sum-squared error is the sum ol
the squared error between the network prediction and the
setual values of the output. In BPNN Figure Sa) the werghts,
w,. and biases. b, in the hidden ransig laver are not fixed as in
the case of RBNN. Ilence. the weights have a nonhnear
relationship in the expression between the inputs and the
outputs. This results in a nonlinear regression problem. which
takes a longer time 1o solve than RBNN. Depending upon the
initial weights and biases. the convergence 10 an optimal
network design may or may not be achieved. Due to the
randomness of the initial guesses. if one desires to mimic the
process exactly tor some purpose. 10 1s impossible to re-tram
the network with the same accuracy or convergence unless the
process 1s reinitiated exactly as before. The initial guess of the
weights is a random process in Matlab. Hence to re-train the
network the initial guess has to be recorded.

The architecture is decided based on past experience
with similar kind of dataset” For a given objective the error
soal is fixed and the number of hidden layer neurons are
varied between 2 and the total number of inputs. Each network
'« retrained few times so as to start the search from random

Hige
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initial weights and biases. The networks that do not achieve
the error goal are discarded. Among the converged
networks the selection of the best network is made based on
the value of 0. The goal is to attain as low a value for o as
possible. The number of neurons in the hidden layer is
increased one at a time till the error goal is achieved and a
small vaiue of g is obtained. Although this method may not
be the best way to obtain the best BPNN. it is considered
adequate for the current study. At times larger network has
a high value of o. which maybe due to overfitting of the
design space. To prevent the model from converging to a
local minimum., an iterative method is used as suggested by
Stepniewski et al'®. The obtained network is retrained with
initial weights obtained by perturbing the weights of the
obtained network.

(13)

w=w, +Anw,

where w is the initial weight vector for the network to be
trained. w, is the wetght vector of the obtained network. A
is the level of perturbation (0.1) and r is a matrix of random
numbers between =1 to 1.
2.5  Design Optimization Process

The entire optimization process can be divided
Into two parts:

[y RS/NN  training

approximation,

27 Optimizer phase.

In the first phase, RS or NN are generated with the
available training data set. In the second phase the
optimizer uses the RS/NN - uring the search for the
optimum until the final converged solution is obtained. The
mitial set of design variables 15 randomly selected from
within the design space. The tlowchart of the process is
shown in Figure 9.

The optimization problem at hand
formulated as min{flx)}subject to I < x < ub. where (b is
the lower boundary vector and b 1s the upper boundary
vector of the design variables vector x. If the goal is to
maximize the objective function then f{x) can be written as
-ufx). where gfx) is the objective function. Additional linear
or nonlinear constraints can be mcorporated if required.
The present design process does not have any such
additional  constraints.  The optimization toolbox'” in
Matlab used here employs o sequential quadratic-
programming algorithm.

phase  tor  cstablishing  an

can be

3 RESULTS AND DISCUSSION

The RS and NN are constructed using the training
data. The test data is then employed to select the best RS or
NN. Specifically in RSM. the difference between the RS
and the training data, as given by Eq. (9), is normally used
to judge the performance of the fit. The additional use of
the-test data helps to evaluate the performance of different
polynomials over design points not used during the training
phase. This gives a complementary insight into the quality



of the RS over the design space. For both the rocket engine
components, different polynomials were ried. Table 2
compares the performance of difterent polvanomials used to
represent the two objective functions ot the injector case, ERE
and Q. Starting with the all the possible cubic terms in the
model. revised models are generated by removing and adding
terms. Similar kind of analysis is also done for the turbine
case. The best polynomial is selected based on a combined
evaluation between ¢, and ©.

For the NN, the test data helps evaluate the accuracy
of networks with varying neurons in BPNN and varying
spread constant in RBNN. Thus the test data are part of the
evaluation process to help select the tinal NN. Based on the
RSM or NN model, a search for optimum design 1s carried out
using a standard, gradient-based optimization algorithm over
the response surfaces represented by the polynomials and
trained neural networks.

3.1  Shear-Coaxial Injector

According to the available data.
performance, ERE. depends only on the velocity rano, VAL
and combustion ¢hamber length, L., which indicates 13
distinct design points for ERE. The chamber wail heat tlux. ¢,
depends on velocity ratio. V/V,. and oxidizer to fuel rato.
O/F. and has nine distinct points. For ERE. us seen from
Figure 1. five distinct levels for L., otfers the potential tor a
fourth-order polynomial fit in the same. while three ditferent
velocity ratios and oxidizer 1o tuel ratio imit the fit 1n these
variables to second order.

A reduced quadratic and
response surfaces are used for the two objective functions. The
lirst model in Table 2a and the sixth model in Table 2b are the
elected cubic models for ERE and (). vespectively. There s
no noticeable improvement among the remaiming cubic model
for ERE. For Q. the selected model is the best i terms ol a,.
although there are other models with identical value ot @

the  njector

4nmcomplete cubie

ERE =70.43+ 1580V, /4 +6.208L . -0.1904 Vol
~0.331L,,,) (1
() =0479-0.04607 F + 0. 191V /Y -0.009007 17
0280/ VY I3

ERE =30.059+3.758V, /V + 143730,
~0.777(V, 1V, = 1439(L,,,, )" +0.002(V, V] "L

coumb
+0.046V, 1V (L) +0.047(L ) (16

D05V V)

comb

()= .566—0.3580/F +0.383V, /V 001910/ Fr

“

~0.107(0/ FWV, 1V, =0.003(V, /V,)” +0.005(0/ Frv, /v,
+0.002(07 FYV, IV,)* (17
Equations (14) and (1%) are the reduced quadratic

responses and Eqs. (16) and (17) represent the reduced cubic
polvnomials used tor the two objective runctions. The t-
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statistics for the coetficients in Eq. (14) vary between 49.30
and 8.06. For the coefficients in Eq. (15), they vary
between 6.28 and 0.52. In Egs. (16) and (17), the t-statistics
of the coefficents vary between 14.69 and 0.31 and 3.36
and 0.74, respectively.

The radial basis networks designed with solverbe
are the largest with 15 neurons in the hidden layer for ERE
network and nine neurons for the  network. Solverb
designs a network for ERE with 14 neurons in the hidden
layer and a network for Q with eight neurons. Compared to
RBNN. BPNN has tewer neurons. the number of neurons in
the hidden layer are eight and four for the ERE and Q
networks. respectively. Details of the networks used are
listed in Table 3. The spread constant used for RBNNs and
the error goal of the training data is also given in Table 3.
The spread constant values are selected from the region
where the performance of the network is consistent with the
variation of spread constant (Figures 3-6). The error goal,
in the case of solverb. is selected based on the network with
the best performance for the ideal spread constant (Figure
7.

The error in predicting the values of the objective
function by different schemes is given in Table 4. Several
abservations can be readily made.

{. Both NNs perform better than the RSM for this data

sel.
2. Both solverbe and  selverh are of comparable
pertormance.

)

The BPNN helps venerate smaller networks and

sertorms at par in comparison o RBNN.

4 The cubic polynomial is more accurate than the
quadratic vne.

Fhe various modeis generated are compared with
test data in Figures 10 and 1. The curves representing the
NN predictions are closer to the data obtained from the
injector model than the RSs thereby demonstrating that NN
models are able o predict better than the RSs. BPNN
performs as well as RBNN but tends to be tlat. Due to its
lower order, the quadratic polynomial is fat. The cubic
polynomial is able to pertorm better than quadratic.

The optimum solution obtained from various
~chemes is shown in Table 3 and Figures 12 and 13. The
aim is to maximize E£RE and minimize (). The wrend of the
ubjective tuncuons in the design space is monotonic and
hence every model 1s able to select identical optimum
design for the given constraints. The flatness of the
polynomials results in bad predictive values of the
objective function for the optimum design. The cubic
polynomial is more flexible than quadratic but is not
consistent. For a V/V, constraint of 4 the quadratic
polynomial is more accurate but for higher values of V/V,
the cubic polynomial is more accurate. [n contrast, the NN
models are able to perform well. Since the optimum design
happens to be the same as one of the training points,
solverbe is able to predict the values of the objective
function accurately. Solverb performs equally well, thereby
showing the capability of performance with fewer neurons.
Performance of BPNN is not as satistactory as suggested in
Table. 4. For lower constraints of V/V,. it performs poorly



but for higher values of V/V,, it is good. This may be due to
the selection of fewer neurons in the hidden layers of the
networks. Overall, it is still better than to the RSM and
demonstrates the tlexibility of NN over RS.

As stated by Papila et al’, when it comes to choosing
between NN and polynomials. polynomials are ecasy (o
compute. The number of coetficients might be numerous but
the linearity of the system expedites the process of coetficient
evaluations. This is also the reason RBNN train fast. On the
other hand, the weights of BPNN are evaluated through a
nonlinear optimization. which slows the training process. Oof
all the NN presented here, the one designed with the help of
solverbe is the fastest to train since the values of the weights
are set to values of the input dependent variables. Solverb
trains with the addition of one neuron at a time with weights
similar to the input and hence is slower.
3.2 Supersonic Turbine

The generation of RS and the training of the NNs are

done with the 76 design points in Table 5A. The analysis wus
mitially done without the constraints and then with the
constraints on (AN)” and Vi

A quadratic RS was nitially generated. [hen. cubic
terms were included. Cubic terms that are products of three
different variables were included because of the number of
data available and the number of levels being three. The trend
of the design data also suggests the presence ot some ot these
terms. Therefore. the wnitial cubic equation has 43 terms. A
reduced third order RSs for 17 and W was setected hased on the
relative pertormances ot ditferent polynomials obtained by
removing terms from the initial cubic equation hased on 1-
statistics. FThe cubic cquation hased on the
cvaluated value of @, and . Table 6 suggests that the reduced
cubie polvnomial is better than the quadratic polvnomial since

wias selected

&, 15 better tor the former. The values of gare comparable.

The t-statistics for the coefticients i the response
.urface of 1 varies between 17972 and 1.2 The coetlicients
in the response surface of W have t-statistics varying between
$22.60 and 0.08. The response surfaces tor 2 and Woare as
tollows:

1 =0.634+2.917D +3608.217RPM = LOISTA
~0.00729C. +0.00544C, - 0.03994, - 4.2820°
C16283.0570D - RPM —1.572x10 RPM - +3.228DA
~13461.8234,, RPM +0.0247C D ~114407C RPM
~0.00647C " ~0.0124C," —0.163k D - 300.440k _RPM
~0.429% A, —~0.00608k C -0.00362%.C, ~0.0128% °
£34719.62DA, RPM +387.74DC RPM —1.743DA 4,
-0.037DC k, —=5384.729A ,, RPMKk,

-113.868C, RPMk, (18

W =0.644+1.509D-961.842RPM
S0.627A ~0.00452C ~0.00412C, - 0.0255k

380507 —7040.351D - RPM = 2.248D4
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~13.0124 " +0.00856C,D +10.744C,RPM

uann

~0.00342C - 0.0104C, D - 23.359C, RPM
£0.0127C, A, —0.00609C,” ~0.0686k, D
193,527k RPM —0.227k A, —0.00324k C,
~0.00183k,C, —0.00673k,* +93.193DC,RPM
~162.604DC, RPM +921.053Dk, RPM
+0.342DA, C, -0.692DA,, k, —0.0162DC.k,

—-11.311C RPME, (19)

The networks designed with solverb have 37 and
75 neurons for n and W. respectively in the hidden layer,
while those designed with solverbe has 76 neurons each.
The BPNN uses significantly less number of neurons by
senerating networks with five and 60 neurons for n and W,
respectively, in a single hidden layer. The NN architectures
chosen are listed in Table 7.

The accuracy of the various models is tested with
the data available in Table 6A and the error is shown in
Table 8. Solverpe has a poor prediction tor 7. which might
be due to overfitting, but performs well for W. The outcome
f Table 8 for the supersonic turbine is similar to that of
Table 4 for the injector. except that BPNN s clearly
inferior to RBNN. Overall, based on the two cases, it seems

that solverd is  most consistent among all  methods
evaluated.
The optimum  solutions  subjected o the

Constraints. of (AN limited to less than 132 (normalized
with bascline valuey and V. 15 limited to less than 1.148
normalized with haseline value). are presented in Table 9.
Since (AN 15 proportional to the product of square of RPM
and A, and Vi is proportional o D times RPM. no
NN/RS is generated for them. By comparing the predicted
sptimal design by the various methods. one observes that
solverbe and BPNN vield noticeably larger errors in 1 and
W respectively. Sofverp and the response surtace are more
consistent with both 7 and W. Judged by the error 1n
predicting Apay. it seems that the RSM is most accurate.
However. since the real goal is 0 maximize Apay. it is
important to note that the actual value of Apav for the
optmal design chosen by the RSM 15 the worst. Clearly,
the large muluplier in Eq. (8) causes bias in relative
weighting between 77 and W, which in turn causes different
“apparent” accuracy levels by various methods.

From a design perspective, it is interesting to
understand the impact of the constraints from A, and Ve
on the optimal turbine parameters. Such an assessment is
otfered in Figures |4 and 15. As D, RPM and A,,,, decrease,
7 WV AN and Apav decrease. C, and C. are almost
constant over the design space and they do not have any
noticeable effect on the objective functions and constraints.
In the case of Cv, the BPNN shows a small perturbation for
the analysis with the constraint. This might be due to the
mapping of some noise by BPNN. Otherwise it is
unaffected by the inclusion of the constraints. The stage
reaction. K. is unaffected as expected. since we are dealing



only with the single stage of the turbine. Hence there 1s no
split on the stage reaction.

4  SUMMARY AND CONCLUSIONS

In the present study. the RS and NN are first
constructed using the training data. The test data are then
employed to assess the pertormance of various polynomials
and to offer insight into model improvement by removing and
adding terms. The best polynomial 1s setected based on a
combined evaluation between o, and @. For the NN. the test
data helps evaluate the accuracy of networks with varying
neurons in BPNN and varying spread constants in RBNN.
Thus the test data are adopted to help sclect appropriate RSM
and NN models. Once an RSM or NN model is constructed. a
search for optimum design is carried out using i standard.
eradient-based optimization algorithm over the response
surfaces represented by the polynomuils and trained neural
networks.

Based on the results obtained. we have reached the
following conclusions.

1. Higher order polynomials perform betier than lower order
polynomials as they have more flexibility. However.
appropriate stauistical measure needs to be taken (o
determine the best terms to include.

2. In the present study. both NN und RSM can pertorm
comparabiyv tor modest data s1zes.

3. Among all the NN contigurations. RBNN destgned with
wolverb scems to be more consistent i pertormance tor
both injector and turbine cases.

4 Rudial basis networks. cven when designed efticiently
with sofverb. tend 1o have many more neurons than
comparable back-propagation win tan-sigmoid or log-
stzmoid neurons in the hidden layer. The basic reason tor
this is the fact that the sigmoid neurons can have outputs
aver a large region of the input space. while radial bases
neurons only respond to relauvely smadi regons ot the
mput space. Thus, larger iput spaces require more radial
basis neurons tor training.

Configuring a radial basis network otten lakes less ume

than that for a back-propagation network because the

training process for the former 1s w lincar mn nature.

H. RBNN with the combined teature of tlexibiliny and linear

more accurate than BPNN. winch s

*h

regresston s
nonlinear.
Based on the results shown in Tables 4 and 8. it 15 seen

that the RBNN technique pertorms consistentiy. and holds
promuse for the design/optimization of advanced rocket
propuision components. The method adopted here to generate
BPNN is not necessarily the most etficient. Given a better
method of making the selection of the number of neurons in
the hidden layer. BPNN. might be able to perform better.
Future work would be aimed at implementing a better
designing procedure for back-propagation networks. The work
has been carried out with modest data sizes and the training 13
fast for such cases. Issues related to the number ot design
vartables and training data size are critical for practical design
pplications. and should be addressed in the future.

d
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O/F V/V, Loy D
4.6,8 4 4,5,6.7.8
4.6.8 6 4.5.6.7.8
46,8 8 4.5.6.7.8
Table 1: Range of design variables considered for the shear coaxial injector element.
Model Coetficient =0 Terms Terms Included c, (%) | o(%)
# Removed
1 tV/Vor Quadratic and less 0.218 | 0.280
2 V/Vo | 0.0857 | 0.212
3 V/AVo' | VAL L, 0.0799 | 0.214
4 VNV L (VVOT 0.0799 | 0.214
3 VN L VYOS L) 0.0859 | 0.213
0 VNVOF Ly 1 VIVOT (L) (VVI L) 0.0936 | 0.212
7 VO Ly 1V VOT Lyomin) s VAV (L) V/VOU L) | 00988 | 0.212

Table 2(a): Difterent cubic polynomials for £RE. (Dependent variables: V/V, and L,gmp. 13 training points,
10 test points) (Errors are given in percentages ot the mean value of the responses).

I

Model Coefficient =0 | Terms } Terms Included | o, (70) o (%)
# Removed :
l T O/F ) Quadratic and less 5445 3.490
2 (V/Voi 0 OF) 3.584 2.234
3 1A Vo 3.584 2.094
4 VAo (O 5.584 | 2.094
3 VAol (O/F 5584 | 2234
6 VNol (O/F) (V/Vor 3900 1 2.094
7 N0y OdT (VVor 1 VAL (O/F” 5.584 2.094

Table 2(b): Ditferent cubic polynomuals tor (. 1 Dependent vartables: O/F and V/V., 9 trmiming points. 4 test

points) (Errors are given in percentages ol the mean value of the responses).

Scheme [ #of # of neurons 1n # of neurons in Error goal aimed for during training
Lavers | the hidden laver | the output laver
| ERE O ERE 0 RE ‘ Q
RBNN (Solverbe) RREE 9 ! i 0.0 {s¢ = 3.23) 0.0 {sc = 1.20}
RBNN (Solvert) 2 4 0 1 I 0 0.001 {se =1.05} 0.001 {sc = 1.05}
BPNN 2 s | 4 ] 0.01 0.01

Table 3: Neural Network architectures used to design the model for shear coaxial injector element. {sc =

spread constant}

Scheme ! o for ERE (%) a for Q (0
RBNN (Solverbe) i 0.207 1.396
RBNN (Solverb) 0.133 1.536

BPNN 0.180 0.832
Partial Cubic RS 0213 2.234

Quadratic RS 0.280 3.490

Table 4: RMS errdr in. predicuing the values of the objective tunction by v

arious schemes for the shear

coaxial injector element (Errors are given in percentages of the mean value of the responses).
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V/V, Scheme O/F Leomsn 101 ERE, % Q, Btw/in"-sec
4 RBNN (Solverbe) 8.0 7.0 98.60 (0.00) 0.588 (0.00)
RBNN (Solverd) 8.0 7.0 98.60 (0.00) 0.588 (0.00)
BPNN 8.0 6.9 98.64 (0.14) 0.578 (1.70)
Partial Cubic RS 8.0 7.0 98.61 (0.01) 0.594 (1.02)
Quadratic RS 8.0 7.0 98.67 (0.07) 0.591 (0.51)
Model 8.0 7.0 98.60 0.588
Model 8.0 6.9 98.50 0.588
6 RBNN (Solverbe) 8.0 7.0 99.20 (0.00) 0.512 (0.00)
RBNN (Sohverb) 8.0 7.0 99.20 (0.00) 0.512 (0.00)
BPNN 8.0 7.0 99.18 (0.02) 0.513 (0.20)
Partial Cubic RS 8.0 7.0 99.15 (0.05) 0.500 (2.34)
Quadratic RS 3.0 7.0 99.17 (0.03) 0.531(3.71)
Model 8.0 7.0 99.20 0.512
8 RBNN (Solverbe) 8.0 7.0 99.40 (0.00) 0.493 (0.00)
RBNN (Solverb) 8.0 7.0 99.40 (0.00) 0.493 (0.00)
BPNN 8.0 7.0 99.41 (0.01) 0.500 (1.42)
Partial Cubic RS 8.0 7.0 99.42 (0.02) 0.499 (1.22)
Quadratic RS 8.0 70 99.67 (0.27) 0.471 (4.46)
Model 50 7.0 99.40 0.493

Table 3. Optimal Solutions tor tived vitues of VA

and grven range of O/F and L., obtained with NN

and RSM schemes for the shear coaxial inector element. (Constraints: $<O/F <8.4< L <7V (ErTOrs
are given in parenthesis for cach prediction isin o)

Type of RS 7 tor o) atorn () a, for W(%) otor W(%)
Quadratic RS 2.507 ).863 0.788 1.281
Reduced Cubic RS F040 1.03] 0.402 1.223

Table 6: Training and predicting crror tor dilferent response surtaces of the objective tunctions ot the
supersonic turbine. (Errors are given in percentages of the mean value of the responses)

Scheme # ot Lavers \ < ol neurons in the # o] neurons in the Error coal aimed tor
mdden laver output laver | during training
3 W Y ‘ W i 3] é 5%
RBNN (Sofverbe) ) "6 6 ! T 1 0.0 0.0
' ‘ | ;’ {s¢ =9.50} | {sc =945}
RBNN (Solverb) 2 1 7 \ 75 ! | : i 0.001 0.001
! | {sc =650} | {sc =835}
BPNN R ? 3 o0 1 | 0.001 0.001

Fable = Neural Network architectures used to design the models for . Woand Vo, of the supersonic

turbine. ;o = spread constant .
Scheme g for () otor W%)
RBNN (Solverbe) 1.251 1.096
RBNN (Solverb) 0.292 1.102
| BPNN 0.777 2.563
1 Reduced Cubic RS 1.031 1.223

L

Table 8: RMS error in predicting the values of the objective tunction by various schemes for the supersonic
wrbine. (Error are given in percentages of the mean value of the responses)
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Scheme D RPM | Aum C. C, K, n W Ve AN- Apay

RBNN | 0972 | 1.181 | 0.811 | 1.443 | 0.836 | 0.0 | 0.810 | 0.636 1.148 1.132 | -0.139

(Solverbe) (5.80) | (0.7 (29.80)
Meanline | 0972 | 1.181 | 0.811 | 1.443 | 0.836 | 0.0 | 0.766 | 0.641 1.148 | 1132 | -0.197
RBNN | 0999 | 1.149 | 0.857 | 1.483 | 0.792 | 0.0 | 0.785 | 0.653 1.148 1.132 | -0.177

(Solverb) (1.75) (0.1 (9.16)
Meanline 1 0999 | 1.149 | 0857 | 1483 [ 0792 | 0.0 | 0.772 | 0.654 | 1.148 | 1.132 | -0.194
BPNN 1024 | 1.121 | 0901 | 1.168 | 1.143 | 0.0 | 0.793 | 0.608 1.148 1.132 | -0.153

(2.49) | (8.63) (21.49)

Meanhine | 1024 | 1121 | 0901 | 1.168 [ 1.143 | 0.0 | 0.772 | 0.666 | 1.148 | 1.132 | -0.195
Reduced | 0903 | 1.272 | 0.700 | 1.706 | 0.871 | 0.0 | 0.758 | 0.591 1.148 1.132 | -0.194
Cubic RS ! (1.50) | (2.10) (8.40)
Meanline | 0.903 | 1.272 | 0.700 [ 1.706 | 0.871 | 0.0 | 0.746 | 0.604 | 1148 | 1.132 | -0.211

Table 9: Optimal Solutions with constraints on V., and AN for a supersonic turbine. (Error given in
parenthesis for each prediction is in ). (All variables ure normalized by their respective baseline values)

Figure [: Design space tor vy ERE
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0 —> W-p
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Figure 2: (b) Transter function, radbas.
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